BIOLOGY FACT FILE SUMMARY NOTES - GENE TECHNOLOGY

 MICROARRAY TECHNOLOGY: Microarray also known as gene chip miniature spotting tile thousands of DNA probes attached to it each spot contains many copies of DNA with a unique base sequence. DNA probs are added to to the chip robotically individuals DNA is amplified by per digested by restriction enzymes, made single stranded ad a label is added label is fluorescent or chemiluminescent (light emitted as a result of a chemical reaction labelled DNA can be then added to the microarray chip is digitally analysed to indicate where binding has occurred all info can determine an individuals base sequence for the gene of interest if the gene affects the way the individual responds to certain drugs then we know genotype which allows medication to be prescribed accordingly. thousands of genes can be investigated at the same time using this technology. techniques can be used to investigate genotypes including drug responses and disease alleles such as brca1 mutations when genes are expressed in a cell, transcription produces mRNA complementary to the gene. analysing which genes are expressed all mRNA is extracted from each interested tissue and then reverse transcriptase is used to make cDNA copy each mRNA CDNAs are then labelled as before and added to the microarray and digitally analysed researchers can see which genes are up-regulated and which are down-regulated in cancer cells.
GENETIC FINGERPRINTING: - Producing a genetic finger print 1. sample DNA amplified by per cut into smaller pieces by restriction enzymes 2. Fragments added to Agarose gel and separated by size using gel electrophoresis 3. DNA is made single strand and copied onto nitrocellulose sheet. 4. Labelled DNA probes added and bind via base complementary 5. Detective system used to see where probes binding using the label - probability of two people having the same sequence is nil - the sequence is inherited in Mendelian fashion - useful in paternity tests/ crime scene - assess genetic variation in populations
GENE SEQUENCING: - An organisms genome can be defined as all of the genetic material DNA. - techniques have been used for many years to determine order of bases A,T,G AND C, process known genome sequencing

- useful in determining causes of disease and tailoring treatment

- DNA sequence will over take microarray technology however is more expensive

- gene enables primary structure of the protein to be worked out

- molecular software can predict secondary, tertiary structure and qaurternary structures

HUMAN GENOMES PROJECT:

- Sequence the entire human genome

- some have implicated in certain types of cancer and Alzheimer's disease

- complexity of the human genome containing overlapping genes, genes within genes and pseudogenes elements of our genetic code is still to be unravelled.

- HGP have significantly reduced the costs involved in sequencing a gene.

SOCIAL AND ETHICAL IMPLICATIONS OF GENE SEQUENCING:

- direct to consumer gene sequencing products

- obtain a report on various aspects of their genome whether they carry genes which increase their risks of developing disease later in life

- how they react with certain medications

PHARMOGENETICS:

- Tailoring of drug treatments to individuals bases on genotypes.

- Both microarray technology and gene technology provides info on individuals genetic make up

- Due to genetic variation people can respond differently to certain drugs, may be ineffective or even dangerous - dosage varies between genotypes

- CODEINE response varies some people can be classified as poor, intermediate, extensive and ultra- rapid metabolisers depending on the alleles they possess

- different alleles result in different levels of enzyme activity for codeine conversion to morphine

- ultra - rapid metabolisers if given normal dosage effects could become toxic and life threatening

- in contrast a poor metaboliser the dosage may be completely ineffective.

- African Americans increase in ultra- rapid metaboliser genotype incidence

- cancer genotypes

- specific mutations which have occurred in the cancerous cells and which genes are being up or down regulated can help determining chemotherapy treatment.

- microarray and gene sequencing can be used to investigate

				only								tien	ts							-	-	-	-	-	-	-	-	-	-	-	-	
				ighl									~~						1													
	- I	eau	ces	aav	erse	arı	ıg r	eact	10n	s an	a si	ae e	eiiec	ets I	ess	com	mor	1	1													
0								0	0			0																				
тн	ER	PE	UTI	C GE	ENE'	FIC	MOI	DIF	[CA]	FION	J:																					
·1.	Her	pes	viru	is to	o tre	eat 1	nali	gna	nt n	nela	nom	ıa																				
															uctio																	
																ine s						_										
~									sert	ed i	nto	it, t	rige	gers	an	imn	une	res	spor	ise	to ir	fect	ted	cells								
. S				ntibi					4 no	noi-			n a -	n+:1	hioti	ia + -		alr.														
7																ic to					0.01	lolo	~ ·	ho -		hnc						
3														orae	er, ca	use	u by	a r	ece	SSIV	e al	ieie	ont	ne :	x - C	1110	mos	som	÷			
	- i			1 of :																												
		-	vec	tor	deli	vers	ger	ne t	o ce	lls i	n th	le liv	ver																			
			100											of f	fo ot -		7															
				•												or IX																
υ	sed	a vi	rus	not	nor	mal	lv fo	und	l in	hum	nans	s to	pre	vent	t tri	al pa	atie	nts I	hav	ing	imm	uni	tv									
u																		102 1	1101	mg	min	uiii	uу									
						7en	to p	atie	nts	to s	supp	res	s im	mu	ne r	eact	ion															
TV.				SIS																												
. 11	עונט	J L L	υnu	in lin'																												
	ells			ings	are											of g								rly								
	ells			ings	are											of g tive								rly								
	ells			ings	are																			rly								
	ells			ings	are																			rly	•	•	•	•	•	•		
	ells			ings	are																			rly	•	•	•	•	•	•	•	
	ells i			ings	are																			ırly	•	•	•	•	•	•	•	•
	ells i			ings	are																			rly	•	•	•	•	•	•	•	•
				ings	are																			irly	•	•	•	•	•	•	•	•
				ings	are																			urly	•	•	•	•	•	•	-	•
				ings	are																			rly	•		•	•	•	•	-	
	ells :			ings	are																			rly		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	•	•	•	· · · · · · · · · · · · · · · · · · ·
	ells :			ings	are																			urly								· · · · ·
-	ðills í			ings	are																			urly								
	ðills í			ings	are																			urly								
-	ðills í			ings	are																			urly								
	blls :			ings	are																			urly								
	blls :			ings	are																			urly								
	blls :			ings	are																											
	ells :			ings	are																											